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Lecture 24 Highlights 
Phys 402 

 
 We consider the integral version of the Schrodinger equation, and the Born series 
expansion for quantum scattering.   

Start with the TISE in three dimensions: − ℏ2

2𝑚𝑚
∇2𝜓𝜓 + 𝑉𝑉𝜓𝜓 = 𝐸𝐸𝜓𝜓, and re-write it in 

this form, 
 (∇2 + 𝑘𝑘2)𝜓𝜓 = 𝑄𝑄, with 𝐸𝐸 = ℏ2𝑘𝑘2

2𝑚𝑚
, and 𝑄𝑄 ≡ 2𝑚𝑚

ℏ2
 𝑉𝑉 𝜓𝜓. 

Recall that the Helmholtz equation for a scalar wave is written as (∇2 + 𝑘𝑘2)𝜓𝜓 = 0, and it 
describes the waves on a drumhead, or quantum waves in a billiard potential, for example.  
How to deal with the inhomogeneous ‘source term’ term 𝑄𝑄?  We utilize the idea of a 
Green’s function.   
 Define the Green’s function as that which satisfies the Helmholtz equation for a 
delta-function source (sort of like the ‘impulse response’ of the wave field): 
  (∇2 + 𝑘𝑘2)𝐺𝐺 = 𝛿𝛿3(𝑟𝑟)        (1) 
Once we know 𝐺𝐺(𝑟𝑟) we can find the solution for any source term (i.e. any potential 𝑉𝑉(𝑟𝑟)) 
as, 
 𝜓𝜓(𝑟𝑟) = ∫𝐺𝐺(𝑟𝑟 − 𝑟𝑟0���⃗ ) 𝑄𝑄(𝑟𝑟0���⃗ ) 𝑑𝑑3𝑟𝑟0���⃗    
This is essentially a convolution of the Green’s function with the source term 𝑄𝑄. 
 The Green’s function for the Helmholtz equation is derived in the textbook on pages 
388-390.  This Green’s function is specific to the equation and the dimensionality of the 
system, and works just as well for classical waves, as well as for quantum waves.  The 
result is: 
 𝐺𝐺(𝑟𝑟) = − 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

4𝜋𝜋𝜋𝜋
, where the exponent is just 𝑘𝑘𝑟𝑟 = �𝑘𝑘�⃗ �|𝑟𝑟| ≠ 𝑘𝑘�⃗ ∙ 𝑟𝑟 (note that the dot 

product has an additional factor of the cosine of the angle between the two vectors).  You 
will show in HW10 that this Green’s function is a solution to the equation (1) above.  Note 
that one can always add to 𝐺𝐺(𝑟𝑟) a solution to the homogeneous Helmholtz equation, 
(∇2 + 𝑘𝑘2)𝐺𝐺0(𝑟𝑟) = 0, and not change the solution to the Schrodinger equation.  Hence the 
general solution is, 

 𝜓𝜓(𝑟𝑟) = 𝜓𝜓0(𝑟𝑟) − 𝑚𝑚
2𝜋𝜋ℏ2 ∫

𝑒𝑒𝑖𝑖𝑖𝑖|𝑖𝑖��⃗ −𝑖𝑖0�����⃗ |

|𝜋𝜋−𝜋𝜋0����⃗ |  𝑉𝑉(𝑟𝑟0���⃗ ) 𝜓𝜓(𝑟𝑟0���⃗ ) 𝑑𝑑3𝑟𝑟0���⃗   ,    (2) 
where 𝜓𝜓0(𝑟𝑟) is a free-particle solution that satisfies the homogeneous Helmholtz equation 
(i.e. with 𝑄𝑄 = 0).  This is called the Lippmann-Schwinger equation.  It is the integral form 
of the Schrodinger equation.  Note that 𝜓𝜓 appears on both sides of the equation, so we need 
a strategy to solve the equation.  It turns out that the Lippmann-Schwinger equation is 
especially well suited for quantum scattering problems. 
 Let’s begin to attack the Lippmann-Schwinger equation in the context of quantum 
scattering.  Imagine a plane wave (free particle) arriving from the left and scattering from 
a localized-in-space potential 𝑉𝑉(𝑟𝑟0���⃗ ).  We take the approximation that 𝑉𝑉(𝑟𝑟0���⃗ ) only extends a 
few fm from the origin, while the observation point for the outgoing particle (𝑟𝑟) is 1 to 10 
meters away from the potential (like the CMS detector at the Large Hadron Collider at 
CERN).  In this case it is an excellent approximation to say that |𝑟𝑟| ≫ |𝑟𝑟0���⃗ |, and the wave 
solution becomes: 
 𝜓𝜓(𝑟𝑟) = 𝐴𝐴 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖 − 𝑚𝑚

2𝜋𝜋ℏ2
 𝑒𝑒

𝑖𝑖𝑖𝑖𝑖𝑖

𝜋𝜋 ∫ 𝑒𝑒−𝑖𝑖𝑘𝑘∙���⃗ 𝜋𝜋0����⃗  𝑉𝑉(𝑟𝑟0���⃗ ) 𝜓𝜓(𝑟𝑟0���⃗ ) 𝑑𝑑3𝑟𝑟0���⃗   .   (3) 

https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Solutions%20to%20the%20Helmholtz%20Equation.pdf
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This is the standard form of a scattering problem that we have seen before (namely 
𝜓𝜓(𝑟𝑟,𝜃𝜃) = 𝐴𝐴 �𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖 + 𝑓𝑓(𝜃𝜃) 𝑒𝑒

𝑖𝑖𝑖𝑖𝑖𝑖

𝜋𝜋
�), leading to this expression for the angular distribution 

function, 
 𝑓𝑓(𝜃𝜃) = − 𝑚𝑚

2𝜋𝜋ℏ2𝐴𝐴
 ∫ 𝑒𝑒−𝑖𝑖𝑘𝑘∙���⃗ 𝜋𝜋0����⃗  𝑉𝑉(𝑟𝑟0���⃗ ) 𝜓𝜓(𝑟𝑟0���⃗ ) 𝑑𝑑3𝑟𝑟0���⃗    .    (4) 

However, we still do not know 𝜓𝜓(𝑟𝑟0���⃗ ) in the integrand of Eq. (4).  Now we will 
make an approximation, called the first Born approximation.  Assume that the incident 
plane wave 𝐴𝐴 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖 is not substantially altered by scattering from the potential, so that 
𝜓𝜓(𝑟𝑟0���⃗ ) = 𝜓𝜓0(𝑟𝑟0���⃗ ) = 𝐴𝐴 𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖 = 𝐴𝐴 𝑒𝑒𝑖𝑖𝑘𝑘′∙�����⃗ 𝜋𝜋0����⃗ , where we have defined the wave-vector of the 
incoming particle as 𝑘𝑘’���⃗ = 𝑘𝑘�̂�𝑧.  The first Born approximation results in this solution for the 
scattering structure factor, 
 𝑓𝑓(𝜃𝜃) ≅ − 𝑚𝑚

2𝜋𝜋ℏ2
 ∫ 𝑒𝑒𝑖𝑖�𝑘𝑘′����⃗ −𝑘𝑘�⃗ �∙𝜋𝜋0����⃗  𝑉𝑉(𝑟𝑟0���⃗ ) 𝑑𝑑3𝑟𝑟0���⃗   .     (5) 

Note that ℏ �𝑘𝑘′���⃗ − 𝑘𝑘�⃗ � is the momentum transfer that the particle gives to the scattering 

potential.  The vectors 𝑘𝑘�⃗ , 𝑘𝑘′���⃗ , and 𝜅𝜅 ≡ 𝑘𝑘′���⃗ − 𝑘𝑘�⃗  make a triangle, with angle 𝜃𝜃 between 𝑘𝑘�⃗ , and 
𝑘𝑘′���⃗ .  The isosceles triangle has the relation 𝜅𝜅 = 2𝑘𝑘 sin �𝜃𝜃

2
�, where 𝑘𝑘 is the magnitude of the 

incident and outgoing wavevectors (we are assuming elastic scattering).  One more point 
about Eq. (5) – it represents the Fourier transform of the scattering potential. 
 An example use of the first Born approximation is that of “low energy” scattering 
from a potential.  In this case the deBroglie wavelength of the incident and scattered particle 
is much larger than the extent of the potential.  Under this approximation, the phase factor 
in the integral of Eq. (5) satisfies �𝑘𝑘′���⃗ − 𝑘𝑘�⃗ � ∙ 𝑟𝑟0���⃗ ≪ 1, hence the phase factor 𝑒𝑒𝑖𝑖�𝑘𝑘′����⃗ −𝑘𝑘�⃗ �∙𝜋𝜋0����⃗  is 1, 
to good approximation, and we have: 
  𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿−𝐸𝐸𝐸𝐸𝑒𝑒𝜋𝜋𝐸𝐸𝐸𝐸(𝜃𝜃) ≈ − 𝑚𝑚

2𝜋𝜋ℏ2
 ∫  𝑉𝑉(𝑟𝑟0���⃗ ) 𝑑𝑑3𝑟𝑟0���⃗   , which is basically just the average value 

of the potential.  When this is applied to the soft-sphere potential, 
 𝑉𝑉(𝑟𝑟) = �𝑉𝑉0 for 𝑟𝑟 < 𝑎𝑎

0 for 𝑟𝑟 > 𝑎𝑎
, 

the result is 𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿−𝐸𝐸𝐸𝐸𝑒𝑒𝜋𝜋𝐸𝐸𝐸𝐸(𝜃𝜃) ≈ −𝑚𝑚𝑉𝑉0
ℏ2

 2
3

 𝑎𝑎3, which you will note is independent of 

scattering angle 𝜃𝜃 (we will see this again below).  The DSCS is 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= �2𝑚𝑚𝑉𝑉0𝑎𝑎3

3ℏ2
�
2
, so the full 

scattering cross section is 𝜎𝜎 = 4𝜋𝜋 �2𝑚𝑚𝑉𝑉0𝑎𝑎3

3ℏ2
�
2
, is proportional to the volume squared of the 

soft sphere. 
 Another special situation is that of a spherically-symmetric potential 𝑉𝑉(𝑟𝑟).  In this 
case the scattering amplitude in the first Born approximation simplifies to, 
 𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝜋𝜋𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝐸𝐸 𝑆𝑆𝐸𝐸𝑚𝑚𝑚𝑚𝑒𝑒𝑆𝑆𝜋𝜋𝑖𝑖𝑒𝑒(𝜃𝜃) = − 2𝑚𝑚

ℏ2 𝜅𝜅
 ∫ 𝑟𝑟0 𝑉𝑉(𝑟𝑟0) sin(𝜅𝜅 𝑟𝑟0)∞
0  𝑑𝑑𝑟𝑟0.  (6) 

Note again that the momentum transfer is ℏ𝜅𝜅, where 𝜅𝜅 = 2𝑘𝑘 sin �𝜃𝜃
2
�.  We considered 

several examples of spherically-symmetric potentials.  The first is the Yukawa nuclear 
scattering potential, 𝑉𝑉(𝑟𝑟) = 𝛾𝛾 𝑒𝑒−𝜇𝜇𝑖𝑖

𝜋𝜋
, where 𝛾𝛾 < 0 typically.  This is an attractive Coulomb-

like potential that is cut off at a few times 1/𝜇𝜇 by the exponential term.  This keeps the 
potential finite in extent and insures that the total scattering cross section is finite.  The 
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resulting scattering function is 𝑓𝑓(𝜃𝜃) = − 2𝑚𝑚𝑚𝑚

ℏ2 (4𝑘𝑘2 sin2�𝜃𝜃2�+𝜇𝜇
2)

, and the differential scattering 

cross section is 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

= |𝑓𝑓(𝜃𝜃)|2.  Example plots of 𝑑𝑑𝑑𝑑
𝑑𝑑Ω

 vs. scattering angle 𝜃𝜃 are shown on the 
class web site.  The angular dependence of 𝑓𝑓(𝜃𝜃) depends on the energy of the 
incoming/outgoing particle.  At low energy, the DSCS is independent of scattering angle, 
similar to the soft sphere scattering case considered above.  At higher energy the DSCS 
favors forward scattering.  Note that one can transform these results into those for Coulomb 
scattering by making the substitution 𝛾𝛾 = 𝑞𝑞1𝑞𝑞1

4𝜋𝜋𝜀𝜀0
 and 𝜇𝜇 = 0.  The result is exactly the same 

DSCS as for the (classical) Rutherford scattering problem! 
 Another example of a spherically-symmetric potential arises for electron scattering 
off of a Hydrogen atom in its ground state.  The potential energy due to the Coulomb 

interaction of the electron and atom in this case is 𝑉𝑉(𝑟𝑟) = −𝑒𝑒 ∫
𝜌𝜌�𝜋𝜋′����⃗ �

�𝜋𝜋−𝜋𝜋′����⃗ �
 𝑑𝑑3𝑟𝑟′, where the 

charge density of the Hydrogen atom is 𝜌𝜌(𝑟𝑟) = 𝑒𝑒{𝛿𝛿3(𝑟𝑟) − |𝜓𝜓100(𝑟𝑟)|2}.  The first term in 
the charge density is that of the nucleus, while the second is that of the electron in the 
spherically-symmetric 𝜓𝜓100(𝑟𝑟) state.  The result for the spherically-symmetric potential 
(after several pages of calculations) is 𝑉𝑉(𝑟𝑟) = − 𝑒𝑒2

𝑎𝑎0
 �1 + 𝑎𝑎0

𝜋𝜋
� 𝑒𝑒−2𝜋𝜋/𝑎𝑎0, where 𝑎𝑎0 is the Bohr 

radius.  Using Eq. (6) for 𝑓𝑓𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝜋𝜋𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝐸𝐸 𝑆𝑆𝐸𝐸𝑚𝑚𝑚𝑚𝑒𝑒𝑆𝑆𝜋𝜋𝑖𝑖𝑒𝑒(𝜃𝜃), the resulting scattering function is 

𝑓𝑓(𝜃𝜃) ∝  𝑎𝑎02  �8+𝑎𝑎0
2 𝜅𝜅2�

�4+𝑎𝑎02 𝜅𝜅2�
2, where 𝜅𝜅2 = 4𝑘𝑘2 sin2 �𝜃𝜃

2
�.  It turns out that bare Hydrogen atoms are 

hard to come by, so the experiment is more easily done with Helium atoms.  In this case 
the ground state has two electrons in the 𝜓𝜓100(𝑟𝑟) state in a spin-singlet, giving rise to a 
spherically-symmetric scattering potential again.  The results of the experiment for 𝑑𝑑𝑑𝑑

𝑑𝑑Ω
=

|𝑓𝑓(𝜃𝜃)|2 are in good agreement with a calculation similar to the one for Hydrogen. 
 Finally, we can go beyond the first Born approximation to carry out a series 
expansion for the scattered wavefunction.  We can re-write the wavefunction in Eq. (2) as 
follows, 
 𝜓𝜓(𝑟𝑟) = 𝜓𝜓0(𝑟𝑟) + ∫𝑔𝑔(𝑟𝑟 − 𝑟𝑟0���⃗ ) 𝑉𝑉(𝑟𝑟0���⃗ ) 𝜓𝜓(𝑟𝑟0���⃗ ) 𝑑𝑑3𝑟𝑟0���⃗   ,    (7) 
where we have simply defined the decorated version of the Green’s function as 

𝑔𝑔(𝑟𝑟 − 𝑟𝑟0���⃗ ) ≡ 2𝑚𝑚
ℏ2
𝐺𝐺(𝑟𝑟 − 𝑟𝑟0���⃗ ) = − 𝑚𝑚

2𝜋𝜋ℏ2
 𝑒𝑒

𝑖𝑖𝑖𝑖|𝑖𝑖��⃗ −𝑖𝑖0�����⃗ |

|𝜋𝜋−𝜋𝜋0����⃗ | .  With this, we can write Eq. (7) schematically 
as “𝜓𝜓 = 𝜓𝜓0 + ∫𝑔𝑔 𝑉𝑉 𝜓𝜓 ”.  The problem remains that the unknown wavefunction 𝜓𝜓 still 
appears in two places in this integral equation.  Here is an idea: substitute the full 
expression for 𝜓𝜓 into the 𝜓𝜓 that appears in the integral: 
 𝜓𝜓 = 𝜓𝜓0 + ∫𝑔𝑔 𝑉𝑉 (𝜓𝜓0 + ∫𝑔𝑔 𝑉𝑉 𝜓𝜓 ) = 𝜓𝜓0 + ∫𝑔𝑔 𝑉𝑉 𝜓𝜓0 + ∬𝑔𝑔 𝑉𝑉 𝑔𝑔 𝑉𝑉 𝜓𝜓 (8) 
The first term 𝜓𝜓0 is the incident particle, while the second term ∫𝑔𝑔 𝑉𝑉 𝜓𝜓0 is the effect of 
the potential treated in the first Born approximation.  The process of substituting Eq. (7) 
into Eq. (8) can continue to create an infinite series, called the Born series: 
 𝜓𝜓 = 𝜓𝜓0 + ∫𝑔𝑔 𝑉𝑉 𝜓𝜓0 + ∬𝑔𝑔 𝑉𝑉 𝑔𝑔 𝑉𝑉 𝜓𝜓0 + ∭𝑔𝑔 𝑉𝑉 𝑔𝑔 𝑉𝑉 𝑔𝑔 𝑉𝑉 𝜓𝜓0 + ⋯ 
Each term in the series involves an additional interaction with the potential 𝑉𝑉, and can be 
thought of as a higher-order interaction between the projectile particle and the scattering 
force center.  There is no guarantee that the series will converge, but for many interesting 
scattering problems, it does.  The Born series can be visualized by the diagrams below: 

https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Scattering%20Theory%20Yukawa%20Atoms%20Feynman%20Diagrams%20Slides.pdf
https://www.physics.umd.edu/courses/Phys402/AnlageFall22/Scattering%20Theory%20Yukawa%20Atoms%20Feynman%20Diagrams%20Slides.pdf
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Each diagram represents an integral in the Born series expansion.  Feynman diagrams were 
developed as a means to keep track of integrals that appear in a perturbation series 
expansion.  These diagrams show the evolution of the particle, and its interactions with the 
scattering potential, in a space-time diagram format. 

http://www.feynman.com/science/feynman-diagrams-decoded/

